USING BIG DATA TO PREDICT RESTORATION POTENTIAL

Andrew R. Marshall, Marion Pfeifer, et al.
Talk Overview

FoRCE
(1) Lianas vs. trees
(2) Restoration planning
[pilots, methods, and intentions]
Why Restore?

Forest Restoration
- TFs: Half lost; One third degraded
- 1 Trillion Trees Campaign
- Bonn Challenge: 350 Mha by 2030

(1) Lianas vs. trees
- Threatening global C sink?
- Neotropics:
 - Liana:tree biomass ↑ 4.6%/yr
 - Tree cover ↑ 50-80%/yr
 - Net carbon uptake ↓ 76%/yr
- But lianas have value
- Big data needed...

“One of the greatest challenges for ecologists this century” (Duncan & Chapman 2003)

Schnitzer, Phillips, van der Heijden, various
Cutting Pilot

- Cutting \rightarrow \uparrow biomass
- Growth \downarrow all size classes
- Net biomass \uparrow 6× faster rate

Pantropical Review

- Impact \sim equivalent across tropics
- Bias: elevation; Neotropics; two pathways? ...
• UY Priming → ARC (& RT/WLT)
• Africa → Australia → upscaling
• Lianas vs. recovery & climate
• Plots / photos / satellite
• Cut some lianas

SO WHAT?
• Extent of impact?
• Threshold response / drivers?
• Can we minimise liana cutting?
Australian Lianas
(should we cut?)

Meremia peltata, Cook’s glory vine
(Convolvulaceae, native)

Cat’s claw creeper (exotic)
FoRCE Plot (0.4ha)

- **Stratification:** (a) climate; (b) degradation
- **Management:** Liana cutting; BACI design
- **SEEKING:** (a) PhDs / postdoc; (b) Collaborators; (c) Asian / Tropical American Sites
(2) FoRCE: Science → Practice

Restoration Planning:
• Seed germination/planting
• Restoration planning
Landscape Restoration Planning

Govts & donors need to set priorities...

Our Approach
(1) Plot data (9 projects)
(2) Estimate biomass & deficit
(3) Method → cost → cost-effectiveness → RESTORATION POTENTIAL
Cost Effectiveness → Restoration potential

Figure 4. (a) Relative priority for reforestation to meet 30% vegetation restoration targets across Australia, assuming a carbon market as per scenario 11 (priority set 2).

Carwadine et al 2015 Bioscience; Gourevitch et al 2016 Env Res Letters
Step 1: Veg plots → Biomass → Biomass deficit
Step 1: Veg plots → Biomass → Biomass deficit

- 1,012 plots 0.09ha (0.025-1.0ha)
- ~50,000 stems
- Climate gradient, elev 270-2,400m
• AGC: elevation/PET; elephants; slope

• Tree shape varies with elevation

• Dbh > height >> species

• Carbon estimate using height: 174.6 ± 32.2 t ha$^{-1}$

• Carbon estimate using diameter alone: 229.6 ± 37.0 t ha$^{-1}$

→ 50t ha$^{-1}$ overestimate !!

Biomass calculation

- Diameter (all stems)
- Height (~10%; d:h models)
- Wood density (~40%; open vs. closed canopy)

→ Three allometric equations

Spectral upscaling

- Recent plots only
- Rapideye 5m → 20m pixel
- Beta logistic regression

Step 2: Veg plots → Biomass → Biomass deficit
Maximum biomass

- Estimate of former biomass (e.g. Gourevitch et al 2016)
- Closed canopy plot biomass (min plot size 0.1ha)
- Biomass-climate [76.2%D]: MWD (-); elevation (∩); slope (-); seasonality (+); temp range (-)
- Upscaling 100m

Biomass deficit

- Maximum biomass MINUS current biomass
- Basic restoration potential

Step 2: Veg plots → Biomass → Biomass deficit
Step 3: Restoration Potential

i.e. Likely **biomass gain** (and carbon sequestration) that could be achieved and its variability and **cost-effectiveness** across the region and landcover classes...

\[
AGC_\$_i = \frac{(\Delta AGC_i \times p)}{\$_i}
\]

AGC$_\$ = Carbon sequestration per US$ (kg.US$^{-1})

ΔAGC = expected change in carbon

p = expected probability of success $ = expected cost in US$

5-year and 50-year scenarios
Components of Cost-effectiveness:
1. Expected change in AGC

- Biomass deficit
- Pattern of biomass recovery estimated (Poorter et al 2016 Nature)
- AGC = AGB ÷ 2
- Intervention needed where biomass loss >70-80% (Hanski 2011 Ambio)...

- Mean recovery: ~50 years
- Variation: MWD; rainfall; seasonality (Poorter et al 2016)
Components of Cost-effectiveness:

2. Probability of Success

Scenarios: Pessimistic (25%), Realistic (50%) and Optimistic (75%) [donors]

Range elsewhere: 20-96%, Felix Finkbeiner, pers. comm.

UNKNOWN: Variation between methods? Assume biomass gain quicker for planting in first 5 years, but biomass equal after 50 years (Shoo et al. 2016)
Components of Cost-eff: 3. Cost per ha

Which method?

<table>
<thead>
<tr>
<th>Landcover class</th>
<th>Landcover feature</th>
<th>Restoration method</th>
<th>No action</th>
<th>Vine cutting</th>
<th>Herb/shrub cutting *</th>
<th>Exotic tree removal</th>
<th>Firebreak cutting</th>
<th>Grass cutting **</th>
<th>Enrichment planting</th>
<th>Framework planting</th>
<th>Nurse trees & soil ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>PESSIMISTIC SCENARIO</td>
<td></td>
</tr>
<tr>
<td>Forest</td>
<td>Biomass</td>
<td>≥30</td>
<td><30</td>
<td><30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><30</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Elevation</td>
<td>Any</td>
<td><1,000</td>
<td>≥1,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Savanna</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>≥5 and <10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>Agriculture mosaic</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td><30</td>
<td><30</td>
<td><30</td>
<td>≥5 and <10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td></td>
</tr>
<tr>
<td>REALISTIC SCENARIO</td>
<td></td>
</tr>
<tr>
<td>Forest</td>
<td>Biomass</td>
<td>≥25</td>
<td><25</td>
<td><25</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elevation</td>
<td>Any</td>
<td><1,000</td>
<td>≥1,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Savanna</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td><25</td>
<td><1</td>
<td>≥1 and <5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>≥50</td>
<td>≥50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Agriculture mosaic</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td><25</td>
<td>Any</td>
<td><25</td>
<td><1</td>
<td>≥1 and <5</td>
<td>0</td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>≥50</td>
<td>≥50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OPTIMISTIC SCENARIO</td>
<td></td>
</tr>
<tr>
<td>Forest</td>
<td>Biomass</td>
<td>≥20</td>
<td><20</td>
<td><20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Elevation</td>
<td>Any</td>
<td><1,000</td>
<td>≥1,000</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Savanna</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td>0</td>
<td><1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>0</td>
<td>≥100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agriculture mosaic</td>
<td>Biomass</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><20</td>
<td><20</td>
<td>0</td>
<td><1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>0</td>
<td>≥100</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Components of CE: 3. Cost per ha

- Land purchase
- Community engagement (agriculture)
- Community engagement (50% <3km)
- Seeds/nurseries
- Equipment
- Labour
- Transport per distance
- Management
- Admin
- Security
Example Cost Calculations
(PENDING FE PAPER 😊)

Vine cutting
• Tanzania: US$5.45/ha/year (Marshall et al 2017) [no admin]
• West Africa: US$1-4/ha (Bongers et al 2002) [no admin?]
• Bolivia & Brazil: $11/ha (range $1–16; various) [no admin?]
• Reforest Africa: **US69.47/ha/yr → US$347.35/5 yr**

Tree planting
• 44x more expensive (Marshall et al 2017) [no admin]
• Uganda: US$1200/ha/5yr (Omeja et al 2009) [admin costs?]
• Reforest Afr: US$1,297.64 (€1/tree) then $69.47/yr
 → **US$1,644.99/5 yr → 4.7x more expensive**
• Plant for the Planet €1/tree; others US$1-2/tree (US$0.30 – $50)
• Australia: $30,000 vs $5,000 [$0-$10,000] (weed control)
 → 6x more expensive (Catterall & Kanowski 2010)
Waves of Evolution in African Forest Conservation

Latham 2014 PhD
(and in prep)
Acknowledgements

Other coauthors: Knight Sarah, Munishi Pantaleo K. T., Mnendendo Hamidu, Seki Hamidu, Platts Philip, Ahrends Antje, Fanning Eibleis, Gereau Roy, Hansen Nicholas, Kivambe Exaud, Lewis Simon, Lovett Jon C., Lyatuu Herman, Mwakisoma Ruben, Shirima Deo D., Villemaire-Cote Olivier, Willcock Simon

FoRCe collaborators: John Herbohn, Robin Chazdon, Oliver Phillips, Roy Gereau, Henrik Enghoff, Bill MacDonald, Yadvinder Malhi, Rob Marchant, Phil Platts, GFBI?; RAINFOR; GEM; KITE; Millennium Seed Bank; TTSA

Thanks: Field assistants, TAWIRI, COSTECH – tunashukuru sana wote!
Save Forests We Will

www.force-experiment.com

SEE LEAFLETS!

Andrew_Marshall13

@Andy_R_Marshall
@FoRCEexperiment