Quantitative Management of Plantation in China

Dr. Jinghui Meng Beijing Forestry University

Plantations in China

- China has the largest areas of planation in the world
 - 69.0 million hectares and 2.5 billion cubic meters
- Plantation is still increasing
 - In the past 60 years, 241 million hectares was established
 - From 2009 to 2013, the plantation has been increased by 7.7 million hectares

Plantations and their problems in China

- The role of planation in China
 - Timber production
 - China is the second largest timber consumer in the world
 - Ecological protection
 - The Tree-North Shelterbelt Project
 - Coastal windbreaks

The problem of plantation in China

- Low productivity and quality
 - The total stand volume is only 53.8 m³ per hectare
 - Annual volume growth is 4.2 m³ per hectare
- Highly susceptible to disturbance
 - Windthrow
 - Snow breakage
 - Fire

In 2008, about 18 million hectares of p subtropical regions of China were affe sleet and ice, causing economic losses of billion US Dollar

Current management systems

- A system of successive cropping is the current management regime for plantations
 - Plantation establishment
 - Intermediate thinning after canopy closure
 - Final clear cutting

Plantation establishment

Intermediate thinning

Final clearcutting

Current management systems

- The shortcomings of the current system
 - Mainly developed for timber production
 - Fixed rotation lengths and rigid thinning schedules
- Furthermore, it is extremely difficult to determine the rotation length and thinning schedules for various management objectives (timber production)!!!
- Field trials
 - Long-term observation period
 - Limited popularization of the trial results/less transferable

Solutions?

Stand density management diagram

Stand density management

- Stand density management diagrams (SDMDs) are average stand-level models and can graphically reflect the relationships amongst yield, density and mortality throughout all stages of stand development
- SDMDs can provide the possibility of simulation of different management regimes and the development of thinning schedules for a wide range of changing site qualities and management objectives

Fundamental basis for SDMD

- The fundamental basis for SDMD is the **self-thinning rule**.
- There are two commonly indices for characterizing the self-thinning rule
 - The Reineke's stand density equation
 - The relative spacing index

Relative Spacing Index

Reineke Equation

We developed SDMDs for the following tree species with different objectives

- Masson pine (*Pinus massoniana*)
 - Timber production
 - Reineke equation
- Beach sheoak (Casuarina equisetifolia)
 - Windthrow risk reduction
 - Relative spacing index

Part I

Development of SDMDs for Masson pine with the objective of timber production using Reineke equation

Masson pine (Pinus massoniana)

- Native Chinese, fast-growing tree species
- Distributed in a wide area of central and southern China, including northern Vietnam
- The planting area has reached 10.0 million hm² and accounts for 6.7% of all forested area in China
- The wood is of good quality and used for construction as well as the pulp and wood fiber industries

Data source

- Data from Tropical Forest
 Research Center in Guangxi
 Autonomous Region
- There are 238 plots of which § 90 are Mosson Pine stands
- The plots are systematically distributed on a square grid of 1*1 km
- Dbh and tree height are measured for each tree

Reineke equation

- The equations says that, in double logarithmic scales, the relationship between tree size and stand density is a straight line in **fully stocked stands**.
- Reineke also argued that the slope of his equation is a constant value of -1.605
- ln(N) = -1.605 ln(QMD) + k
 - where N (trees/ha) is the number of individuals per ha, QMD (cm) the quadratic mean tree diameter

Construction of SDMD

- Fully stocked plots were selected using relative density approach
- Reineke equation was fitted using the fully stocked plots with Reduced major axis (RMA) regression

ln(N)=11.741-1.596ln(dg), R²=0.905

Construction of SDMD

• Based on the local experience, 60% and 30% of the self-thinning line are determined as the upper and lower limit of **optimum density** interval and 20% was defined as the reasonable value for the crown closure situation

ln(N)=11.759-1.596ln(dg)	60%
--------------------------	-----

$$ln(N)=11.066-1.596ln(dg)$$
 30%

$$ln(N)=10.660-1.596ln(dg)$$
 20%

SDMD for growth and harvest Prediction

• In addition, dominate height model, stem volume model and site index model were developed to produce the final SDMD:

Dominate height model:
$$H_d = 1.229 QMD^{0.869} N^{0.062}$$

Stem volume model:
$$V = 0.000183N(QMD - 1.1369)^{2.399}$$

Site index model:
$$t = \frac{12.505}{0.457 + \ln\left(\frac{SI + 3}{H_d}\right)}$$

All the models were combined to construct SDMD

Management application 1

Simulation of different management alternatives for timber production

Management application

- Let us consider, an initial stand, in a 26 m site index class, at an index age of 20 years, with 10 cm diameter and 1662 stems per hectare
- Our target tree diameter is 40 cm
- Two management regimes are discussed: (a) a commercial thinning regime (keep stand density in the optimum area), (b) a precommercial thinning regime (Just for comparison)

Table 2. Comparison of two management regimes

	t (years)	hd (m)	Density ((trees/ha)	Dg (cm)		V(cm ³⁾		
			before	after	before	after			
Commercial									
CT1	14	14.73	1622	609	15.27	18.47	79.26		
CT2	26	23.82	609	223	28.52	34.66	158.96		
Final harvest	34	27.91	223		40		305.31		
Total yield							543.53		
MAI							15.99		
Precommercial									
CT	9	9.22	1622	324	10	13.67	33.11		
Final harvest	41	30.25	324		40		466.2		
Total yield							499.31		
MAI							12.18		

Both total yield and MAI in commercial thinning is larger than precommercial thinning

Part II

Development of SDMDs using relative spacing index for Beach sheoak with the objective of windthrow risk reduction

Windthrow and snow breakage

Can suitable management regimes reduce the possibility of windtrow and snow breakage?

Answer: YES

Slenderness coefficient (SC): is calculated by dividing the average height by the average diameter at breast height (dbh) when both variables are measured in the same units

SC is closely related to stand density

Beach sheoak (Casuarina equisetifolia)

- Naturally distributed in South-East Asia, Australia and the Pacific
- Distinguished capability to fix atmospheric nitrogen and hence widely used to improve site quality
- An important source of fuelwood and charcoal and is also used as a building material and other wood-based industries
- One of the most popular tree species for constructing windbreaks in the sandy coastal regions throughout the world

Data source

- Data from **Daodong Forest Farm** in Hainan Province
- There are 156 plots, which are systematically distributed on a square grid of 800×1000 m
- The plots are cluster plots consisted of three circular subplots with a radius of 5 m
- 56 plots are dominated by Beach Sheoak
- Dbh and tree height were measured in each plot

Construction of Basic SDMD

• Basic model system for SDMD

Relative spacing index (RSI)	$RSI(\%) = \frac{10,000}{\sqrt{N} \cdot H_0}$
Quadratic mean diameter (QMD)	$d_g = \beta_0 \cdot N^{\beta_1} \cdot H_0^{\beta_2}$
Stand volume (SV)	$V = \beta_3 \cdot d_g^{\beta_4} \cdot H_0^{\beta_5} \cdot N$

Isolines

$$N = \left(\frac{10,000}{RS \cdot H_0}\right)^2$$

$$N = \left(\frac{d_g}{\beta_0 \cdot H_0^{\beta_2}}\right)^{\frac{1}{\beta_1}}$$

$$N = \left[\frac{V}{(\beta_3 \cdot \beta_0^{\beta_4}) \cdot H_0^{(\beta_2 \cdot \beta_4 + \beta_5)}} \right]^{\frac{1}{(\beta_1 \cdot \beta_4 + 1)}}$$

Construction of SDMD

• Equations for evaluation of stand stability

Relationship between the average stand height and

dominant height

Relationship between the average stand diameter and

average stand diameter

Equation for slenderness coefficient (SC)

Isoline for SC

$$\overline{H} = \alpha_1 \cdot H_0 + \alpha_2,$$

$$\overline{D} = \alpha_3 \cdot d_g + \alpha_4$$

$$SC = \frac{\alpha_1 \cdot H_0 + \alpha_2}{\alpha_3 \cdot \beta_0 \cdot N^{\beta_1} \cdot H_0^{\beta_2} + \alpha_4}$$

$$N = \left(\frac{\alpha_1 \cdot H_0 + \alpha_2 - \alpha_4 \cdot SC}{\alpha_3 \cdot \beta_0 \cdot H_0^{\beta_2} \cdot SC}\right)^{\frac{1}{\beta_1}}$$

Table? Pagraggion coefficients of the models predicting the stand variables for Equation (2) Equation (3) const Standard residuals Standard residuals Equation < 0.001 N 10 15 20 100 150 200 Predicted stand quadratic mean diameter (cm) Predicted stand volume (m3) Equation (8) Equation (7) 3 < 0.001 Standard residuals Standard residuals < 0.001 10 15 20 25 12 18 Predicted average stand height (m) Predicted average stand diameter (cm) Fig. 2 Plots of standardized residuals against the fitted values of the models used to produce the basic SDMD 0.98 < 0.001 8 $0.280 \, \text{cm}$ (0.0099)(0.0212)

We superimposed isolines for SC on the Basic SDMD

SDMD capable of stand stability assessment

Management application

- Let us consider, for example, an initial stand in a 5-m site class at an index age of 3 years, with 10 cm diameter and a density of 1054 trees per hectare.
- We evaluated the following two management regimes to reach the same target harvest (target harvest height 18m):
 - a commercial thinning;
 - a commercial thinning considering stand stability represented by the SC

(2) A commercial thinning without considering stand stability

	t	${ m H_0}$	N (trees/ha)		dg (cm)		SC		V	
	(years)	(m)	before	after	before	after	before	after	(m³/ha)	
Thinning without consideration of stand stability										
TH1	7	14	1054	638	10.70	11.78	106	97	13.50	
Final harvest	14	18	638		14.13		102		63.21	
Total yield									76.71	
MAI									5.48	

Only one intermediate thinning operations should be conducted, with a yield of 76.71 m³/ha

(1) A commercial thinning with considering stand stability

	t	$\mathbf{H_0}$	N (trees/ha)		dg (cm)		SC		V	
	(years)	(m)	before	after	before	after	before	after	(m ³ /ha)	
Thinning with consideration of stand stability										
TH1	3	5	1054	589	5.09	5.69	93	90	1.76	
TH2	5	10	589	405	9.38	10.08	90	86	3.59	
тнз	8	15	405	335	13.51	14.01	90	88	3.61	
Final harvest	14	18	335		15.98		90		42.57	
Total yield									51.53	
MAI									3.68	

To secure stand stability, THREE intermediate thinning operations should be conducted, with a yield of 51.53 m³/ha which is less than 76.71 m³/ha in the first management regime.

Conclusion

- The current plantation management regimes with fixed rotation lengths and rigid thinning schedules might fail in achieving management objective
- SDMD can simulate different management alternatives in various site qualities for different objectives
- More SDMDs should be constructed for the most commonly tree species in China

Thank you for your attention !!!