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• Long-term consistent decline in net aboveground 
biomass reported in some boreal and tropical forests
• Large increases in mortality with increases in 

growth insufficient to offset these losses (Brienen 
et al. 2015; Chen and Luo 2015; Chen et al. 2016).

• Major driver in some cases: global change type 
drought
• Defined as increased evapotranspiration without 

increased precipitation leading to negative 
ecological water balances
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• Global change type drought linked to:
• Increased mortality (van Mantgem et al. 2009; 

Michaelian et al. 2011; Luo and Chen 2013; Allen 
et al. 2015; Hember et al. 2017)

• Decreased growth (Chen and Luo 2015; Hogg et 
al. 2017)

• Declining net aboveground biomass change (Ma 
et al. 2012; Chen and Luo 2015; Chen et al. 2017; 
Hogg et al. 2017)



Local site buffering
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• If global-change type drought is a major driver of 
effects of climate change, then sites with little water 
retention should be more negatively affected than 
sites with higher water retention



Boreal forests
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• Disturbance driven system, 
endogenous stand 
development controls on 
biomass dynamics (Zhang et al. 
2015)



Boreal forests and climate change
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Boreal forests and 
climate change

7

• Growth trends uncertain (Chen and Luo 
2015; Chen et al. 2016; Girardin et al. 
2016)
• Dependent on age, composition,

location
• Mortality consistently increasing (Peng 

et al. 2011; Hember et al. 2017)
• Net biomass change consistently 

decreasing (Ma et al. 2012; Chen and 
Luo 2015; Chen et al. 2016) 

Chen et al. 2016
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Well-drained sites will have less growth and higher 
biomass loss from mortality across the study period 

than sites with higher water retention



Study area
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• Permanent sample plot (PSP) network across 
Saskatchewan and Alberta, Canada

1. Known date of wildfire; unmanaged
2. All trees marked and measured accurately and 

repeatedly
3. Minimum of three censuses
4. Plot size, soil drainage class, and spatial 

information available



Study area
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Biomass Calculations
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• Species specific allometric equations (Lambert 2005) 
• Growth: sum of increase in surviving stems and 

biomass added by recruits divided by census interval
• Mortality: sum of biomass lost due to dead stems

divided by census interval
• Net change: Growth minus mortality, or final biomass 

of census period minus initial biomass divided by 
census interval

• Relative rates were absolute rates divided by mean 
standing biomass
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Statistical model

13

jijijijj

ijjijijj

AfYAfD

YDAfYD









)()(

)(AGB

65

43210ij

• D is the soil drainage class of the plot
• Y is the mid-calendar year 
• f(A) is natural logarithm of forest age for absolute 

ΔAGB models and is the inverse of the natural 
logarithm of forest age for relative ΔAGB

• π is the random plot error
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• Why would trends be consistent?
1. Differences in species composition
2. Adaptation to local site conditions (irrespective 

of community composition)
3. Possibly less sensitive to long-term trends and 

more sensitive to discrete events (e.g., droughts)

• Differences in relative growth rates are interesting 
but difficult to discern ecological relevance



Conclusion
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• Our results suggest that climate change serves as a 
top-down control on forest growth, mortality and 
net biomass change. 

• Indicates that the current practise of pooling local 
drainage effects into a random effect is robust
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