Toward a global land use open data- a baseline for global land monitoring

The extent of forest in dryland biomes

Jean-Francois Bastin

DRYLANDS MONITORING WEEK 2015

From the 19th to the 23rd of January 2015, in Rome, FAO, WRI and IUCN with funding support of EU-ACP and GEF, organized a workshop on "Monitoring and assessment of drylands: forests, rangelands, trees and agrosilvopastoral systems".

Gathering 80 participants from countries and international organizations. This event led to the "Rome Promise" in which participants agreed to:

- Form an open-ended collaborative network or community of practice to advance monitoring and assessment of drylands, including understanding of their users
- Communicate the value and importance of drylands monitoring to relevant stakeholders, including policy makers and resource partners
- Develop a dynamic roadmap for collaborative action

Conservation policy and the measurement of forests

Joseph O. Sexton^{1*}, Praveen Noojipady^{1,2,3}, Xiao-Peng Song¹, Min Feng¹, Dan-Xia Song¹, Do-Hyung Kim¹, Anupam Anand^{1,4}, Chengquan Huang¹, Saurabh Channan¹, Stuart L. Pimm⁵ and John R. Townshend¹

WHY do we care?

- 41.5 % terrestrial lands
- About 2 billions people concerned
- Majority developing countries
- Local livelihoods dependent on vegetation resources

Sorensen (2009). UNEP-WCMC

- On the fore of the combat against desertification
- By 2100, +50% of terrestrial lands
- 7 of the 25 hotspots for biodiversity conservation

WHY is it not done yet?

Issue 1: « Open forest » and spatial resolution satellite images do not really get along

PLOS Ecology Community

J.Atkins. PLOS Ecology&Community webpage

WHY is it not done yet?

Issue 2 : Very high spatial resolution is problematic with automated approaches → Considering angles of acquisition conditions (sun-view-sensor geometries)

For details see Barbier et al. (2011). Remote Sensing of Environment Bastin et al. (2014). Ecological Applications

WHY is it not done yet?

Issue 2 : Very high spatial resolution is problematic with automated approaches → Considering vegetation specificities (phenology and reflectance)

What do we propose?

Working directly on Very High Spatial Resolution images with human operators

- → An approach equivalent to National Inventories done in developped countries from photo-interpretation of pictures taken by planes
- → Close to Geo-WIKI approaches

Google Earth

Google earth

Combining Very High spatial and temportal resolution data

How to use collect earth for the drylands assessment?

How did we proceed?

15 partner institutions and 239 operators, +210 000 plots

How did we proceed?

Systematic and stratified sampling design

Assessing tree cover and forest land use

Main results (1)

Forest cover

Main results (1)

- 1,324 Mha (± 7.4%) of area covered with more than 10% of tree cover, and 1,079 Mha (± 3.5%) as forest Land-Use according to FAO-FRA definition
 - → An area equivalent to Tropical or Boreal forest extent
- About two-third of these areas present a closed canopy (tree cover ≥ 40%; 777 Mha / 724 Mha)

Main results (2)

Comparing apples with apples

Source		Global FRA RSS (2010)	Globcover (2009)		nsen et al. (2013)	Sexton (et al. 2013)	FAO - 6	iFS	(2016)
Product		Landsat	MODIS		Landsat	La	ndsat	Very high	ı re	solution
Method		sampling	wall-to-wall	W	all-to-wall	wall-t	o-wall	san	npli	ing
Year		2005	2008		2000		2010	201	.5	2015
Forest land use		Yes	Yes		-		-	Ye	es	-
Forest cover		-	-		≥10%		≥10%		-	≥10%
Africa		67	83		216		114	28	6	364
Asia		43*	148		154		200	213 (97	^k)	299
Europe		22*	49		97		116	63 (26°	*)	92
N-America		166	155		173		196	20	4	238
Oceania		29	28		55		55	11	.4	124
S-America	_	123	46	_	205		268	19	7	208
Total		450	509		900		949	1079 (917 ⁻	*)	1327

- → Increase from 400 to 500 Mha
- → Extent doubled in Africa and Australia

Main results (2)

Comparison with Hansen's map for illustration purpose

Previously unreported forest areas in dryland biomes increase current estimates of the global forest cover by at least 9 %.

- Drylands
- Forest in both
- Forest in GDA, no forest in Hansen
- No forest in GDA, forest in Hansen

KEY POINTS

- A new role for FAO ?
- A new tool and a new big data in between ground data and remote sensing
- User and Policymaker friendly
- Independent from any environmental layer
- 1st global use of VHR images
- Version 0 will only improve in time with re-assessments

The near future:

A version 0 at global level: Please use the data on drylands, question it, and help us making it better!

Now that we know where the trees can grow in drylands, let's act!

Thank you for your attention

Google Earth Engine

Google Earth Engine

Google Earth Engine

For more details

Article

Collect Earth: Land Use and Land Cover Assessment through Augmented Visual Interpretation

Adia Bey ^{1,*}, Alfonso Sánchez-Paus Díaz ¹, Danae Maniatis ^{2,3}, Giulio Marchi ¹, Danilo Mollicone ¹, Stefano Ricci ¹, Jean-François Bastin ^{1,4}, Rebecca Moore ⁵, Sandro Federici ¹, Marcelo Rezende ¹, Chiara Patriarca ¹, Ruth Turia ⁶, Gewa Gamoga ⁶, Hitofumi Abe ¹, Elizabeth Kaidong ⁶ and Gino Miceli ⁵

Food and Agricultural Organization of the United Nations, Forestry Department, Rome 00154, Italy; alfonso.sanchezpausdiaz@fao.org (A.S.-P.D.); giulio.marchi@fao.org (G.M.); danilo.mollicone@fao.org (D.M.); stefano.ricci@fao.org (S.R.); jeanfrancois.bastin@fao.org (J.-F.B.); sandro.federici@fao.org (S.F.); marcelo.rezende@fao.org (M.R.); chiara.patriarca@fao.org (C.P.); hitofumi.abe@fao.org (H.A.)

Assessing tree cover

Uncertainty analysis

Step 1: Error distribution due to visual interpretation

Step 2 : propagate error on TC estimation

Obs	AVI	
TC_A	TC_1	
TC_B	TC_2	observed val
TC_Z	TC_3	

10 %

40 %

AVI	Obs + Err1	Obs + Err2	Obs + Err100
TC_1	TC_1 + err1	TC_1 + err2	TC_1 + err100
TC_2	TC_2 + err1	TC_2 + err2	TC_2 + err100
TC_3	TC_3 + err1	TC_3 + err2	TC_3 + 100

Step 3 : define TC threshold

0.0 0.2 0.4 0.6 0.8 1.0

Area	Area err1	Area err2	Area err100
Area	Area err1	Area err2	Area err100

RESEARCH Open Access

Uncertainty in the spatial distribution of tropical forest biomass: a comparison of pan-tropical maps

Edward TA Mitchard^{1*}, Sassan S Saatchi², Alessandro Baccini³, Gregory P Asner⁴, Scott J Goetz³, Nancy L Harris⁵ and Sandra Brown⁵

Uncertainties

- Uncertainties calculated here for the total forest area calculated from (1) forest land-use assessment and from (2) the tree cover assessment.
- Uncertainties are calculated combining "sampling error" and "measurement error"

$$\sigma^{2} = \sum_{i=1}^{I} A_{i}^{2} f_{i} \frac{\pi_{i} (1 - \pi_{i})}{n_{i} - 1} + \sum_{i=1}^{I} A_{i}^{2} \left(\frac{n_{i} - 1 - f_{i}}{n_{i} - 1} \right) \tau_{i}^{2}$$

Sampling error

Measurement error

Measurement error – Tree Cover

- Standard deviation of the measurement estimated calculating the Root Mean Square Difference (Montesano et al. 2009) between ground and collect earth (RMSD = 8 %)
- Propagation on forest area estimation: Implementing the SD, following a Gaussian distribution centered on 0, we also account for an operator effect of ρ =0.5:

Measurement error – Forest land use

- Based on the percentage of agreement/disagreement comparing ground with Collect Earth (Agreement = 87%)
- Propagation on forest area estimation : Selecting 13 % of land-use to switch from forest/non-forest and non-forest/forest, accounting for an operator effect of ρ =0.5 :

Results on uncertainties

 On forest estimation based on Tree Cover threshold of 10%:

On forest estimation based on Tree Cover threshold of 10%:

