

Giulia della Longa¹, **Francesco Boscutti²**, Lorenzo Marini¹, Giorgio Alberti²

¹ University of Padova, Italy; ² University of Udine, Italy

Forest Research in the Big Data Era

September 6-9, 2017 Beijing, China

Background

- Since the Roman age, strong land use change
- In European lowlands remnants of natural forests are rare, small, fragmented and often endangered
- Nature conservation networks

Background

Forest area in Friuli Venezia Giulia Plain

1816-1962

(Paiero, 1965)

Background

- Traditional management: coppice with standards, rotation period 8-10 years
- Rotation periods have been elongated (18-20 years)
- Abandonment and/or conversion into high forests

Aims of the study

- How does coppicing influence plant biodiversity in plain forests?
- Is the conversion to high forest a win strategy to sustain biodiversity and for conservation?

Materials and methods: study area

- A wood remnant (162 ha) named "Selva di Arvonchi"
- Altitude: 1-3 m a.s.l.
- Collective property levied by civic uses
- Sub-continental climate, (T=13.2°C; Rain=1087 mm)
- Natura 2000 Special Areas of Conservation

Material and methods: study area

 Vegetation: Asparago tenuifolii -Quercetum roboris

Oak die-back

Quercus robur

Carpinus betulus

Ulmus minor

Alnus glutinosa

Materials and methods: sampling design

- Chronosequence approach
- Five 100 m² plots per stand
- Classical dendrometric measurements
- Two seasonal vegetation surveys

Materials and methods: data analysis

- Data were pooled for each stand:
 - Stem density, basal area and standing volume
 - Taxonomical diversity (Shannon index)
 - Functional diversity (richness Frich,
 evenness Feve, divergence FDiv)

- Data elaborations:
 - Forest structure and species diversity
 - Understory species assemblage

Results: changes in forest structure

Forest type	Age	N ha ⁻¹	G (m² ha ⁻¹)	V (m³ ha-1)
Coppice-with-standards	7	1519±419	13.2±1.4	119.6±17.2
	9	1812±503	19.5±4.5	183.4±59.5
	11	2051±498	13.2±3.7	98.6±28.8
	14	2371±357	26.0±2.3	245.0±43.4
	16	2789±151	22.6±5.1	191.2±59.9
	18	3787±631	31.7±3.7	248.0±42.8
High forest	54	1894±295	26.1±4.0	238.5±43.2

Coppice:

• +183 stems ha^{-1} yr-1; R^2 =0.90; p=0.004

• +0.49 m² ha⁻¹ y⁻¹; R²=0.73; p=0.03

• +0.49 m³ ha⁻¹ y-1; R^2 =0.53; p=0.10

Mean ± s.e.

Results: changes in plant diversity

Diversity		overall		herbs		shrub				
index		coef	p-value	R ²	coef	p-value	R ²	coef	p-value	R ²
117	Itercept	1.292	<0.001	0.71	1.293	<0.001	0 [1	1.701	<0.01	0.54
H'	Slope	-0.024	0.022	0.71	-0.025	0.067	0.51	-0.048	0.059	0.54

Results: changes in functional richness

Diversity index		coef	p-value	R ²	
Frich	Intercept	2.829	<0.001	0.04	
	Slope	-0.089	<0.001	0.94	

Results: changes in functional evenness

Diversity index		coef	p-value	R ²	
l Feve	Intercept	0.764	<0.01	0.57	
	Slope	0.024	0.051		

Results: changes in plant composition

Conclusions/1

- Coppice-with-standards, ruled by reasoned forest management plans, helps to maintain a higher heterogeneity under several aspects
- Abandonment of coppicing → habitat oversimplification, weakening of functions and loss of crucial species
- High forest stands sustain the diversity of species sensitive to disturbances

Conclusions/2

 The simultaneous presence of coppices and stands converted to high forests is the best solution to sustain biodiversity in plain forests as already seen in other woods

Thanks for your attention

Francesco Boscutti

Department of Agricultural, Food, Environmental and Animal Sciences -*University of Udine*

e-mail: francesco.boscutti@uniud.it

