Structural characteristics of forests in China based on PKU-PSD project

Jingyun Fang, Zhiheng Wang, Zhiyao Tang, Zehao Shen, Xiangping Wang, Chengyang Zheng

> Dept. Ecology, Peking University Sep 6, 2017

Outline

- 1. Background of the PKU-PSD project
- 2. Structural characteristics of forests in China
- 3. Ongoing work

Climate of China

China's locations in the Whittaker global biome scheme

If you study China, you know the world.

Challenges in current studies

Region selection bias

Challenge

Limitation: Lack of fine species distribution data

PKU-PSD project

PeKing University- Plant Species Diversity Project for China's Mountains

- **1992-up to now**
- 70 mountains
- ~2000 forest plots

Plot design for PKU-PSD project

(1) Plot area:

Tree layer: 600 m²

Shrub layer: 100m²

Herb layer: 5×1 m²

(2) Items measured:

Trees (DBH≥3cm): species, DBH, height

Shrubs: species, coverage and height

Herb layer: species, abundance, coverage

Structural characteristics of forest communities in China

Scientific questions

- (1) How do the structural characteristics in forests vary across China?
- (2) What are the climatic drivers of these structural characteristics?

Measurements

- DBH
- Tree height
- # of stems
- Basal area
- Species richness

DBH (Diameter at breast height)

- ☐ Statistics and biogeography of forest structures
- □ Geographic changes in life forms of trees
- □ Patterns of species richness and species turnover

1. Statistics and biogeography of forest structures

Frequency distribution

Biogeography of forest structures

Changes with latitude, temperature and

precipitation

DBH

Tree height

Stem density

Total basal area (TBA)

Latitude Temperature Precipitation

Fang et al. Ecography, 2012

Contribution of temperature (MAT) and precipitation (MAP) to forest structures

Item	MAT & AP (%)	MAT pure (%)	MAP pure (%)	Joint (%)
DBH (cm)	26.1	7.1	1.6	17.3
Height (m)	16.4	0.3	6.0	10.2
density (/ha)	30.3	1.3	9.1	16.8
Total Basal Area (cm²/ha)	2.0	0.8	1.9	-0.8

2. Geographic changes in life forms of trees

2. Geographic patterns of life forms of trees

Broadleaf vs. conifer trees

% broadleaf trees = X_{broadleaf} /(X_{broadleaf}+X_{conifer}) % conifer trees = 1 - % broadleaf trees

Evergreen vs. deciduous broadleaf trees

% evergreen broadleaf trees
 = X_{evergreen} /(X_{evergreen} + X_{deciduous})
 % deciduous broadleaf trees
 = 1 - % evergreen trees

Changes in proportions in broadleaf or conifer trees

broadleaf vs. conifer trees

Number of Stems

latitude (°N)

broadleaf

coniferous

Tree species richness

TBA

Changes in proportions in evergreen or deciduous trees among broadleaf trees

evergreen vs. deciduous trees

evergreen

deciduous

3. Patterns of species richness

Species richness changes with latitude, temperature and precipitation

1 species/ 600 m².1°N

0.8 species/ 600 m².1°N

Fang et al. Ecography, 2012

Metabolic Theory of Ecology (MTE)

MTE explains large-scale patterns of species diversity in terms of metabolism using the following formula.

$$\ln(S) = C_0 + E \frac{1}{kT}$$

It has two predictions:

(1) log(species diversity) is a linear function of 1/kT (T is absolute temperature); (2) The slope (*E*) is $0.6\sim0.7$ (or 2/3)

TME at different elevations

Relationship between log(species richness) and 1/kT

Increase in slopes of TME with elevations

species turnover is faster from south to north at higher elevations

Ongoing work

Forest community inventory in North China

☐Permanent plots

■Normal plots

	Permanent plots	Other plots	
Size	0.1ha (20 $ imes$ 50 m)	$600 \text{ m}^2 (20 \times 30 \text{ m})$	
Number	450-500	5500	
Location	gridded	Random in all forests	
Revisit	Every 5 years		

Threats of climate change on woody plant diversity

30°N

20°N

1971~19751976~1980

Leads to changes in habitats, growth, phenologies, distributions and migration

How climate change influences plants in China?

Forest plots in China

- 65 major mountains
- ~1600 plots (20 × 30 m)

- Resample 4-6 mountains
- Setup permanent plots
- Repeat the survey every 5 years

http://www.ecology.pku.edu.cn/plants/woody/index.asp

• From "Database of China's Woody Plants (v2.0)"

- compiled from more than 320 national and provincial floras, many local floras and specimen records
- examined by 21 local experts of plants
- c.a. 7.5 years
- Taxonomy: Flora of China (English version)
- Specimen records (~80%) + observation data (~20%)

Specimen records

observation data

http://www.ecology.pku.edu.cn/plants/woody/index.asp

Taxon	Species	Genus	Family
Woody plants	11405	1176	158
Trees	3165	493	104
Shrubs	7205	796	135
Liana	1035	152	46

A software was developed to manage the database

Fang J, Wang Z, Tang Z (2011)

- Winner of the Chinese Government Award for Publishing (2011)
- 教育部自然科学一等奖 (2014)

Mechanisms of species assembly

Acknowledgement

National Natural Science Foundation of China Ministry of Science and Technology Ministry of Education Peking University

Many participants of the field survey since 1992

Species-abundance relationship

4 forest types: evergreen broadleaf forest, temperate deciduous broadleaf forest, temperate conifer & broadleaf mixed forest, and boreal forest

4. Patterns of species turnover (or β-diversity)

β-diversity (species turnover): difference in species composition along an environmental gradient, and is expressed as similarity of species composition (usually using Sørenson index).

β diversity =1-S (S=Sørenson);

$$S = \frac{C}{(A+B)/2} \times 100$$

Two key findings:

1. β-diversity of trees and shrubs both decreases with latitude, *i.e.*, species turnover is faster in south than in north.

2. β-diversity of trees and shrubs both increases with regional species pool, suggesting that species turnover is faster in the species-rich mountain.

Tang et al. Ecography, 2012

Statistics of the forest structure (DBH>3cm)

ltem	# Plot 样方数	Mean 均值	Range 范围	St-dev 标准差
DBH (cm)	1384	14.2	7.2-29.5	5.8
Height (m)	1113	9.9	4.5-19.9	4.0
Density (/ha)	1375	1450	383-4216	1075
Total basal area (m²/ha)	1384	1.73	3152- 44142	1.08