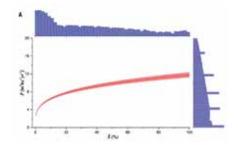


Pascal A. Niklaus¹⁾ Yuanyuan Huang, Helge Bruelheide, Keping Ma, Bernhard Schmid, et al.

> ¹⁾Institute of Evolutionary Biology and Environmental Studies University of Zurich, Zurich, Switzerland

Barne and

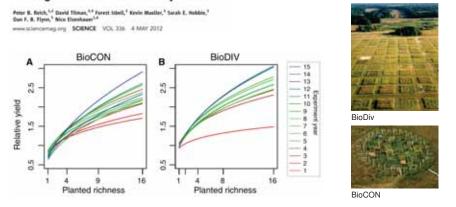
Approaches to Study BEF Relationships


Observational

natural ecosystems • high complexity • near equilibrium confounded factors • biodiversity can be driver or response

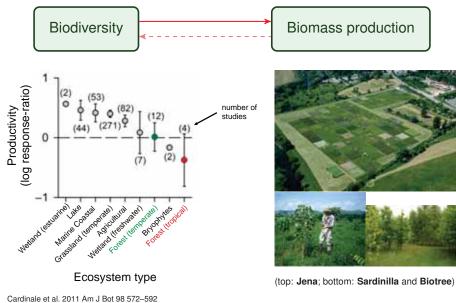
Positive biodiversity-productivity relationship predominant in global forests

Jingling Liang," Thomas W. Crowther, Nicolas Pleard, Sasan Wiser, Me Zhou,

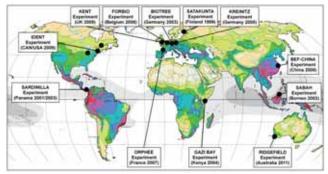

・ロト・日本・日本・日本・日本・日本

Approaches to Study BEF Relationships

Experimental


highly controlled • low complexity • biodiversity is driver • traceable mechanisms artificial • short-term • non-steady state • lacks large scale and environmental context

Impacts of Biodiversity Loss Escalate Through Time as Redundancy Fades



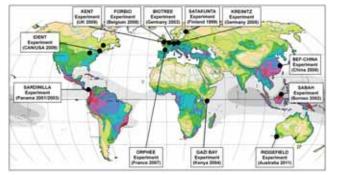
◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへぐ

Biodiversity-Ecosystem Functioning Experiments

BEF Experiments in Forest

Map by Barthlott 2005; colors (yellow \longrightarrow violet) indicate vascular plant diversity

BIOTREE, Germany


Sabah, Borneo

Sardinilla, Panama

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

BEF Experiments in Forest

Map by Barthlott 2005; colors (yellow \longrightarrow violet) indicate vascular plant diversity

- Diversity is higher in low latitude forest
- Niche overlap may be lower in low latitude forest
- Mechanisms may differ (pathogens and herbivores more important)

BEF-China

- Joint Chinese-German-Swiss biodiversity-ecosystem functioning experiment in forest (http://www.bef-china.de)
- Main Experiment: Planted forest communities with 1...24 species
- Comparative Study Plots: → Baruffol et al. 2013 PLoS ONE Natural subtropical forest plots in forest reserve

Pilot Experiment:

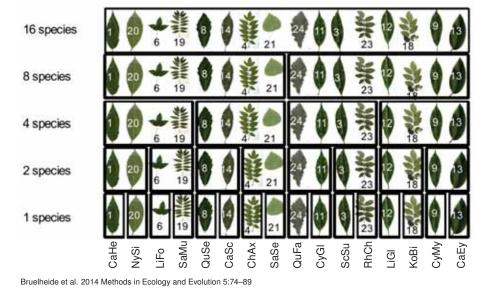
Short-term experiment with planted communities with 1...4 species

Pilot Experiment

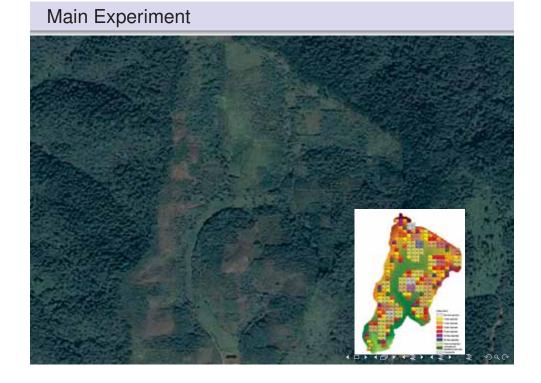
<ロ> <回> <回> < 三> < 三> < 三> のへで

Design of "Main Experiment"

- Extinction scenarios based on pool of 40 broadleaved tree species Random (24, 16, 8, 4, 2, 1 species)
 - Directed Two trait based species removal (16, 8, 4, 2, 1 species)
 - rarity: rare species lost preferentially
 - SLA: high SLA species lost preferentially
- Reference plots: bare ground, economically important species
- Factorial treatments in a subset of plots ("VIP" plots):
 - BEFmod Insecticide and fungicide treatments Shrubs Understory diversity treatment with shrubs

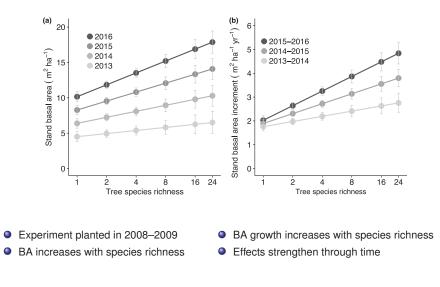

In total:

- 2 sites with a total of 566 plots
- 400 trees per plot
- \sim 200'000 trees and 90'000 shrubs planted

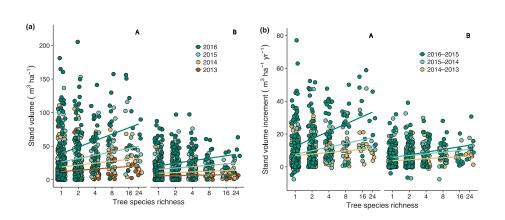

Bruelheide et al. 2014 Methods in Ecology and Evolution 5:74-89

Random Extinction Scenario: Broken Stick Design

6 pools of 16 species; 1 shown below, 2 used in this study:


・ロト・四ト・モト・モー シック・

Main Experiment

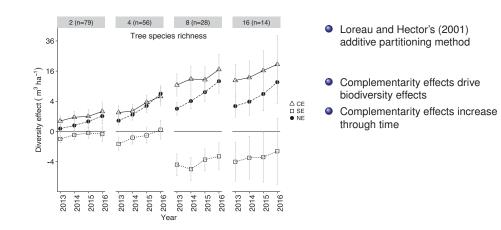


Stem Basal Area: Wood Production

Huang et al., in prep.

Stem Volume: Wood Production

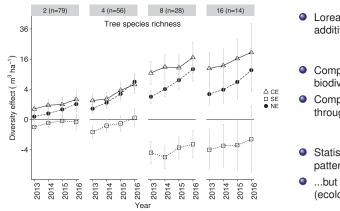
• Two sites: "Site A" planted in 2008, "Site B" planted in 2009


• Tree volume responses follow BA responses

• Similar results for C stocks (calculated using harvested trees and site-specific allometries)

Huang et al., in prep.

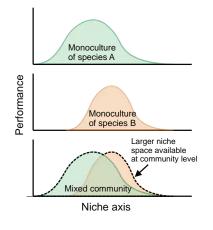
▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 - のへで


Mechanisms

Huang et al., in prep.

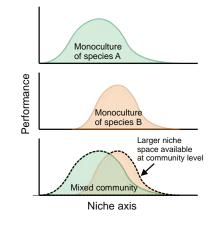
▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Mechanisms


- Loreau and Hector's (2001) additive partitioning method
- Complementarity effects drive biodiversity effects
- Complementarity effects increase through time
- Statistical analysis of relative yield patterns...
- ...but what are the actual (ecological) mechanisms ?

Huang et al., in prep.

くりょう 小田 マイボット 山下 シックション


Mechanisms Promoting Complementarity

• It is evident that some sort of complementarity drives biodiversity effects

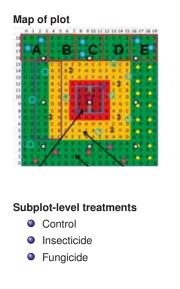
Mechanisms Promoting Complementarity

- It is evident that some sort of complementarity drives biodiversity effects
- Nature of complementarity rarely identified
 - (e.g. von Felten et al. 2012 Ecology 93 2386-2396; Hoekstra et al. 2015 Plant Soil 394 21-34)
- Abiotic resources? Biotic interactions?

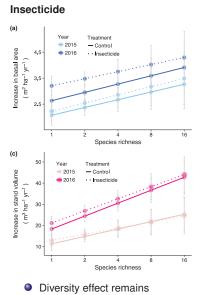
Mechanisms Promoting Complementarity

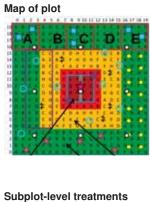
- It is evident that some sort of complementarity drives biodiversity effects
- Nature of complementarity rarely identified (e.g. von Felten et al. 2012 Ecology 93 2386-2396; Hoekstra et al. 2015 Plant Soil 394 21-34)
- Abiotic resources? Biotic interactions?

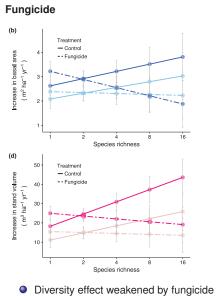
▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで


		R	10		ъT	H
				<u>.</u>	1.8	<u> </u>
1.11	1.5	9 4 5	0 # C	0.6	E . 8	1.1
1.10	C A	1 * P			C 1 10	6. F
		154			28.	
1.1		310	the second second			100
1.00	1	2.8	Q. D. L	1.12	1.1	
6		0 0 0			5 C 0	•
1.00		0 6 4	and an	A 16		1.5
10.48	- 2	4 1 1 1	ALC: UNK		1 .6	
		9 Z		1.2	H D 10	1 AT
		V		5 C .	1.20	
1 M	ter factor	y	1			

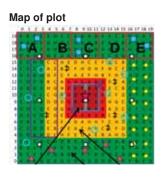
Subplot-level treatments


- Control
- Insecticide
- Fungicide


Huang et al., in prep.


◆□▶ ◆圖▶ ◆≧▶ ◆≧▶ ─≧ ─の�?

Huang et al., in prep.

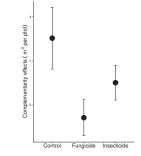

Control

Insecticide

Fungicide

Huang et al., in prep.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Subplot-level treatments

- Control
- Insecticide
- Fungicide

Huang et al., in prep.

Fungicide

- Diversity effect weakened by fungicide
- Complementarity-effect decreases

- Fungicide-effect on diversity-effect is species-dependent
- We are currently analysing these patterns in relation to traits

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

• Competition Experiment

3 Species pools \times 11 Mixtures \times 2 Treatments \times 4 Repl. = 264 Plots

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

・ロト・日本・日本・日本・日本・日本

• Competition Experiment

3 Species pools \times 11 Mixtures \times 2 Treatments \times 4 Repl. = 264 Plots

9	Species	Conifer	Evergreen
_ (Castanea henryi	×	×
5 6	Elaeocarpus decipiens	×	~
Pool 1	Quercus serrata	×	×
	Schima superba	×	~
(Cunninghamia lanceolata	 	~
Pool 2 D O O	Cyclobalanopsis glauca	×	×
ဂို ၊	Dalbergia hupeana	×	×
	Pinus massoniana	~	~
(Cyclobalanopsis myrsinifolia	×	~
$\frac{1}{2}$	Castanopsis sclerophylla	×	~
Pool 3	_ithocarpus glaber	×	~
	Sapindus mukorossi	×	×

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

(ロ)、(型)、(E)、(E)、(E)、(の)へ()

0

• Competition Experiment

Mixture	Species richness	Composition
1	1	А
2		В
3		С
4		D
5	2	AB
6		AC
7		AD
8		BC
9		BD
10		CD
11	4	ABCD

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

<□> <圖> < => < => < => < => <</p>

• Competition Experiment

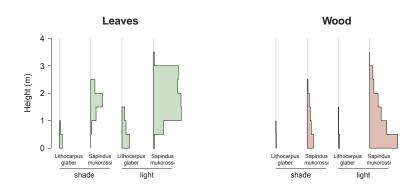
3 Species pools \times 11 Mixtures \times 2 Treatments \times 4 Repl. = 264 Plots

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

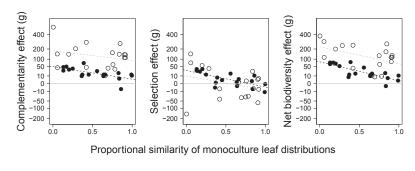
・ロ・・ 「日・・ ヨ・ ・ 日・ ・ 日・


- Competition Experiment
- 3 Species pools \times 11 Mixtures \times 2 Treatments \times 4 Repl. = 264 Plots

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104


• Competition Experiment

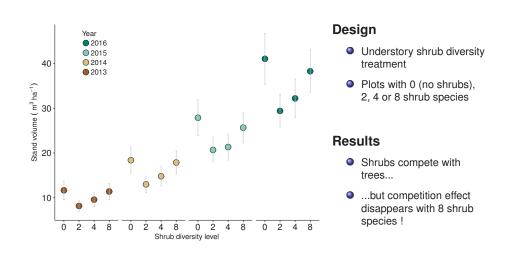
3 Species pools \times 11 Mixtures \times 2 Treatments \times 4 Repl. = 264 Plots



Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ○ ○ ○ ○ ○ ○

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104



• Species with more different monoculture canopies are more complementary and produce more extra biomass in mixture

Niklaus et al. 2017 Ecology 98 1104-1116; Schmid & Niklaus 2017 Nature Ecology & Evolution 1 0104

・ロト・日本・日本・日本・日本・日本

Complementary Understory

Huang et al. in prep.

Summary & Conclusions

- Community-level productivity increases with diversity (BA, wood volume, biomass: Huang et al., in prep. LAI: Peng et al. 2017 JPE 10:129-135)
- Biodiversity effects increase through time
- Effects are driven by complementarity among species
 - Complementary enemy niches
 - Complementary canopy architecture
 - Complementarity between trees and understory

Summary & Conclusions

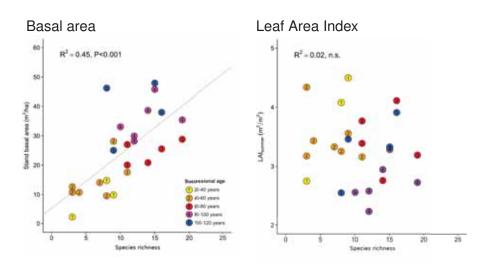
- Community-level productivity increases with diversity (BA, wood volume, biomass: Huang et al., in prep. LAI: Peng et al. 2017 JPE 10:129-135)
- Biodiversity effects increase through time
- Effects are driven by complementarity among species
 - Complementary enemy niches
 - Complementary canopy architecture
 - Complementarity between trees and understory

Thank you for your attention !

Forest Research in the Big Data Era

・ロト・日本・モート モー うへの

Comparative Study Plots in Nature Reserve



- Gutianshan Nature Reserve (near "Main Experiment")
- Comparative Study Plots with natural vegetation
- 27 plots selected to span gradients in species richness and successional age

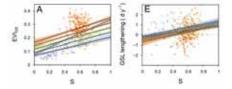
Baruffol et al. 2013 PLoS one 8 e81246 Bruelheide et al. 2011 Ecol Monogr 81 25–41

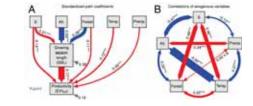
◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○ ○

Comparative Study Plots in Nature Reserve

• Architectural complementarity among species likely contributed to increased BA in diverse plots Castro et al. 2016 PLoS one 11 e0167771; Baruffol et al. 2013 PLoS one 8 e81246

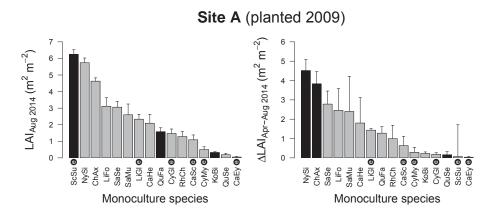
Productivity Across Landscapes


Biodiversity promotes primary productivity and growing season lengthening at the landscape scale



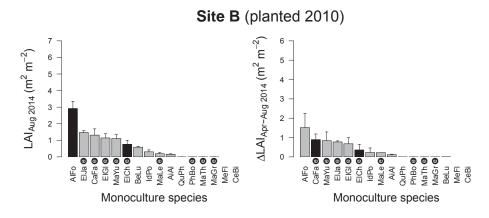
500 plots with species inventory data

• 16 years of MODIS satellite data


PNAS, in press, DOI:10.1073/pnas.1703928114

◆□▶◆□▶◆□▶◆□▶ ● ● のへで

Leaf Area Index of Monocultures

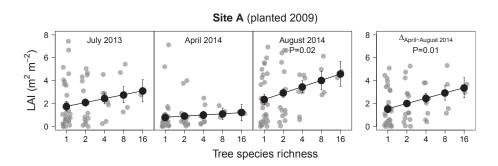


Ailanthus altissima · Alniphyllum fortunei · Betula luminifera · Castanopsis eyrei · Castanopsis fargesii · Castanea henryi · Castanopsis sclerophylla · Celtis biondi · Choerospondias axillaris · Cyclobalanopsis glauca · Cyclobalanopsis myrsinifolia · Elaeocarpus glabripetalus · Elaeocarpus japonicus · Idesia polycarpa · Koelreuteria bipinnata · Liquidambar formosana · Lithocarpus glaber · Machilus grijsii · Machilus leptophylla · Machilus thunbergii · Manglietia yuyuanensis · Meliosma flexuosa · Nysa sinensis · Phoebe bournei · Quercus fabri · Quercus phillyraeoides · Quercus serrata · Rhus chinensis · Sapindus mukorossi · Sapium sebiferum · Schima superba

Peng et al. (2016) J Plant Ecol, DOI:10.1093/jpe/rtw016

◆□▶▲母▶▲国▶▲国▶ 国 めんぐ

Leaf Area Index of Monocultures

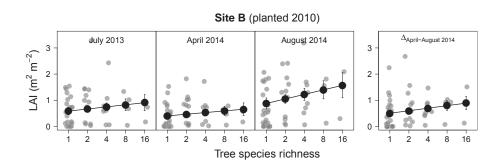


Ailanthus altissima · Alniphyllum fortunei · Betula luminifera · Castanopsis eyrei · Castanopsis fargesii · Castanea henryi · Castanopsis sclerophylla · Celtis biondi · Choerospondias axillaris · Cyclobalanopsis glauca · Cyclobalanopsis myrsinifolia · Elaeocarpus glabripetalus · Elaeocarpus japonicus · Idesia polycarpa · Koelreuteria bipinnata · Liquidambar formosana · Lithocarpus glaber · Machilus grijsii · Machilus leptophylla · Machilus thunbergii · Manglietia yuyuanensis · Meliosma flexuosa · Nyssa sinensis · Phobe bournei · Quercus fabri · Quercus phillyraeoides · Quercus serrata · Rhus chinensis · Sapindus mukorossi · Sapium sebiferum · Schima superba

Peng et al. (2016) J Plant Ecol, DOI:10.1093/jpe/rtw016

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへの

Diversity Effects on Leaf Area Index

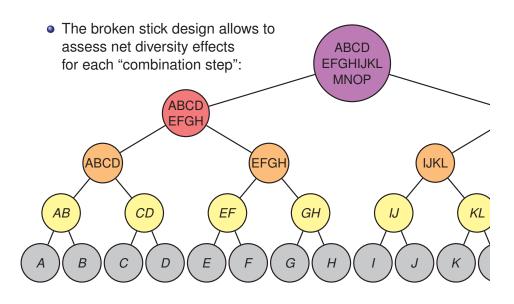


- Positive effect of species richness on LAI after 5 years
- Positive effect on seasonal LAI increase
- Effect appears to develop with time

Peng et al. (2016) J Plant Ecol, DOI:10.1093/jpe/rtw016

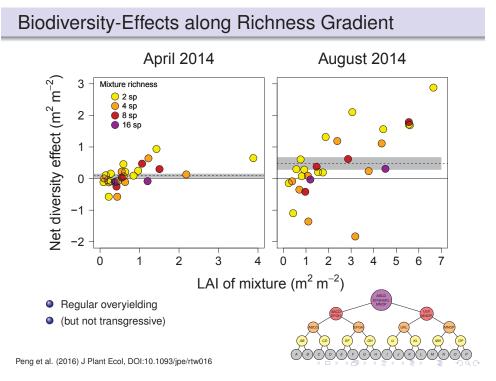
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Diversity Effects on Leaf Area Index

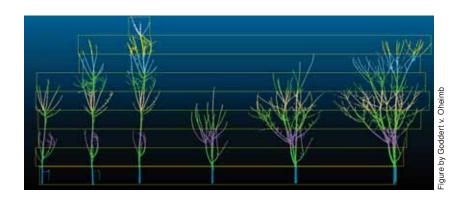


- Positive effect of species richness on LAI after 5 years
- Positive effect on seasonal LAI increase
- Effect appears to develop with time

Peng et al. (2016) J Plant Ecol, DOI:10.1093/jpe/rtw016


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

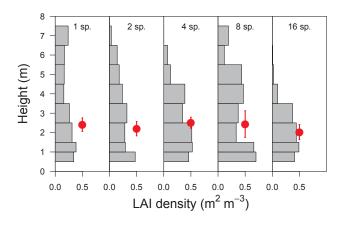
Biodiversity-Effects along Richness Gradient



Peng et al. (2016) J Plant Ecol, DOI:10.1093/jpe/rtw016

・ロト・雪・・雪・・雪・・白・

Architecture of Trees



• Terrestrial laser scanning to determine shape of trees (Goddert von Oheimb, University of Dresden, Germany)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

LAI distribution

• In 2015, layered LAI assessment by hemispheric photography, with camera mounted on pole

• Height of gravity of leaf area

(ロ)、(型)、(E)、(E)、(E)、(の)へ()

TOC

